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Summary 

RNA-binding proteins (RBPs) regulate all aspects of the life of mRNA transcripts. They are critically 

important in regulating immune responses, most notably by restraining excessive inflammation that can 

potentially lead to tissue damage. RBPs are also crucial for pathogen sensing, for instance for the 

recognition of viral nucleic acids. Concordant with these central regulatory roles, the dysregulated activity 

of many RBPs can give rise to disease. The expression and function of RBPs are therefore highly 

controlled by an elaborate network of transcriptional, post-transcriptional and post-translational 

mechanisms, including the ability of different RBPs to cross-regulate each other’s expression. With an 

emphasis on macrophages and mast cells, we review current knowledge on the role of selected RBPs that 

have been shown to directly impact the expression of inflammatory transcripts. By focusing specifically 

on proteins of the Regnase and ZFP36 family, as well as on factors involved in N6-methyladenosine 

(m6A) deposition and recognition, we discuss mechanism of action, regulatory feedback, and impact of 

these selected proteins on immune responses. Finally, we include examples of the role of m6A and RBPs 

in the recognition of viral RNAs. Overall, we provide a general overview of the impact of selected RBPs 

on the myeloid compartment, followed by a discussion of outstanding questions and challenges for the 

future.  
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Introduction 

Throughout their lifetime, mRNA molecules associate with RNA-binding proteins (RBPs) that regulate 

every aspect of their life cycle. The maturation, stability and translation of mRNA transcripts are all 

controlled by a large number of co-transcriptional and post-transcriptional processes occurring both in the 

cell nucleus (5’-capping, splicing, poly-A tail addition, RNA editing, RNA methylation) and in the 

cytoplasm (regulation of nuclear export, quality control, modulation of stability, translation and turnover). 

The association of mRNAs with regulatory RBPs was hypothesized shortly after the initial discovery and 

characterization of mRNAs 1,2. By studying fish embryos, it was observed that some of the newly 

synthesized mRNAs were not immediately translated, but they were rather maintained for a time in an 

inactive form as part of non-ribosomal ribonucleoprotein complexes 3. Such ribonucleoproteins were 

defined “informosomes”, since they somehow carried the information relative to mRNA translation and 

they represented a new layer of post-transcriptional regulation 3. Indeed, it later became clear that even 

after maturation, splicing and nuclear export, the mature, cytoplasmic transcripts are at the center of an 

RNA-protein interactome containing a variety of RBPs that recognize RNA modifications, sequence 

motifs and secondary structures. Such extensive RBP network modulates mRNA translation and stability 

in the cytoplasm, and a substantial part of the regulatory mechanisms occurs within the 3’-untranslated 

region (UTR) of mRNAs. Here, we focus primarily on selected RBPs that have a role in modulating 

inflammatory responses, acting as regulators of inflammatory mRNA expression and decay. Specifically, 

we discuss the mechanism of action and regulation of the Regnase, ZFP36 and YTHDF families of RBPs, 

the latter being important in the recognition of the N6-methyladenosine (m6A) modification. 

 

Regnase and ZFP36 proteins in inflammation 

The Regnase and ZFP36 families of RBPs represent two examples of the variety of mechanisms of action 

and regulation that can be observed among the many RBPs that modulate gene expression in the immune 
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system, and their importance is highlighted by the severity of the phenotype of mice lacking these factors 

(Fig. 1).  

Tristetraprolin (TTP, encoded by the Zfp36 gene) is one of the best characterized destabilizing RBPs in 

the immune system. TTP binds to mRNA targets containing sequence motifs known as AU-rich elements 

(AREs), which can be found within the 3’UTR of many inflammatory mRNAs. Indeed, TTP is a crucial 

factor in restraining excessive inflammation, by limiting the production of highly inflammatory cytokines 

such as TNF. The physiological importance of TTP in post-transcriptional regulation was revealed by the 

phenotype of Zfp36-deficient mice 4. These mice develop a complex inflammatory syndrome, in addition 

to autoimmunity and myeloid hyperplasia, that was primarily mediated by the enhanced expression of 

TNF. Indeed, TTP was shown to accelerate degradation of the Tnf mRNA via direct binding to the ARE 

in its 3’UTR. Myeloid-specific deletion of the Zfp36 gene led to high susceptibility to endotoxin 

challenge and grossly elevated levels of TNF in the serum, although this phenotype did not completely 

phenocopy the full TTP deficiency, highlighting the importance of TTP expression in multiple immune 

cell types 5. Indeed, ablation of TTP in neutrophils led to their increased accumulation at sites of 

infection, and the direct comparison of differential gene expression in macrophages vs. neutrophils 

lacking Zfp36 revealed that the effect of TTP on the transcriptome was dependent on the cell type 6. One 

prominent example of such differential effect is provided by the inflammatory cytokine Il6, whose 

expression was decreased in neutrophils lacking TTP while it was increased in macrophages 6. The 

mechanism underlying this differential regulation remains to be understood. As for its mode of action, 

TTP was shown to interact with the CCR4-NOT deadenylation complex, which plays a central role in 

mRNA decay mediated by TTP7. 

The ZFP36 family includes two additional family members, structurally related to TTP, ZFP36L1 and 

ZFP36L2. Despite the similarities, specialized functions for these two family members have been 

reported primarily in B and T lymphocytes, and the full extent of redundancy and target overlap of these 

proteins in different cell types and conditions is still incompletely explored 8,9. 
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The Regnase family of proteins represents another example of RBPs with an important function in 

restraining inflammation. These proteins are characterized by an intrinsic RNase enzymatic activity, and 

recognize stem-loop structures in target inflammatory mRNAs, leading to their direct degradation. Within 

the immune system, the most prominently expressed family member is Regnase-1, that in macrophages 

regulates the expression of a number of inflammatory transcripts including Il6, Il12b and Ptgs2 10,11. 

Regnase-1 preferentially degrades transcriptionally active mRNAs, after they have undergone at least one 

round of translation 10,12, and in this process it requires the helicase UPF1, which contributes to Regnase-

1-dependent target degradation by unwinding the stem-loop structure 10,12. Indeed, RNA-

immunoprecipitation and sequencing (RIP-seq) analysis of CBP80- and eIF4E-associated mRNAs 

(identifying mRNA undergoing the first or subsequent rounds of translation, respectively), in wild-type 

and Regnase-1-deficient cells, showed that Regnase-1 bound to and affected the stability specifically of 

CBP80-associated inflammatory mRNAs 12. This observation suggests a mechanism permissive of fast 

expression of inflammatory transcripts in response to stimulation followed by rapid degradation, therefore 

potentially contributing to restrain excessive inflammation. Within the immune system, Regnase-1 is 

expressed in both myeloid and lymphoid cells 13, while the other Regnase family members show more 

restricted patterns of expression. For example, Regnase-3 appears to function mostly in a myeloid-

specific manner and to be highly expressed especially in macrophages 14. Mice lacking Regnase-3 in 

macrophages developed lymphadenopathy linked to excessive interferon (IFN)-g expression and 

dysregulated IFN signaling, although the exact mechanism underlying this effect remains to be fully 

understood 14. This observation suggests that RBPs of the same family, despite sharing the same 

functional domains and mode of action, may have unique functions linked to their levels of expression 

and cell type specificity. 

 

 

 



Bataclan et al. 

 6 

Regulation of RBP activity 

Remarkably little is known about how RBPs are themselves regulated, although there are increasing 

examples of RBPs being regulated by phosphorylation, subcellular localization, proteolytic cleavage and 

proteasomal degradation 15 (Fig. 2). From a transcriptional point of view, different members of the same 

RBP family can be regulated by different transcription factors, indicating that even when their functions 

appear to be fully redundant in vitro, the expression kinetics or response to specific signals may differ 

widely, leading therefore to distinct functional outcomes in vivo. For example, the transcription factor 

BHLHE40 regulates the expression of ZC3H12D (encoding for Regnase-4) but not ZC3H12A (Regnase-

1) in human T lymphocytes 16. In macrophages, IFN signaling, and in particular the transcription factor 

IRF7, was shown to induce Regnase-3, but not Regnase-1 expression, which was instead under the 

control of NF-kB activation 14. Different RBPs can also strongly regulate their own expression and the 

expression of other members of the same family. For instance, Regnase-1 targets its own mRNA 17, and it 

is also regulated post-transcriptionally by direct binding of Regnase-3 to its 3’UTR, at least in 

macrophages 14. How this cross-regulation impacts the immunomodulatory functions of these proteins 

was revealed by a study showing that Regnase-3 promotes skin inflammation by favoring expression of 

TNF by macrophages while at the same time repressing IL-6 expression by plasmacytoid dendritic cells 

(pDCs). While reduced IL-6 expression was due to direct binding of Regnase-3 to the Il6 mRNA, 

followed by its degradation, Regnase-3 indirectly promoted Tnf expression by degrading the transcript 

encoding for Regnase-1, which in turn acts as a negative regulator of TNF production 18. 

One key aspect of regulation in post-transcriptional networks is indeed represented by the fact that 

different RBPs often regulate their own expression and that of other regulatory proteins, increasing the 

complexity of dissecting the impact of a given RBP on gene expression. Apart from the cross-regulation 

of Regnase factors mentioned above, another example in this direction is provided by the interaction 

between the RBP HuR, microRNAs (miRNAs) and TTP. Specifically, HuR (ELAVL1) is an ARE-binding 

protein involved in the regulation of the stability of inflammatory transcripts. Overexpression of HuR in 
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transgenic mice initially revealed a role as a negative regulator of inflammatory responses 19, and mice 

lacking HuR in myeloid cells displayed an exacerbated inflammatory profile 20. Relevant to the interplay 

of HuR functions with other RBPs, transcriptome-wide analysis of HuR and miRNA binding sites in 

murine macrophages revealed that the proximity of HuR sites attenuated miRNA binding to the same 

target 21. Interestingly, among the genes prominently affected by this competition between HuR and 

miRNA binding was Zfp36. Upon stimulation with lipopolysaccharide (LPS), HuR binding to the 3’UTR 

of Zfp36 attenuated miR-27b-mediated suppression of TTP expression, leading to the upregulation of 

TTP itself 21. Further highlighting the extent of cross- and co-regulation between RBPs, a recent analysis 

across 150 different RBPs showed that RBP binding to the 3’UTR generally facilitated miRNA binding 

through increased accessibility of mRNA secondary structures 22. How this interplay between regulatory 

factors impacts mRNA translation and cell responses remains to be understood. 

The expression and activity of different RBPs are also controlled at the level of protein stability and post-

translational modifications, some of which are summarized in Fig. 2. In general, phosphorylation of RBPs 

can influence RNA-binding affinity, protein stability and subcellular localization. For instance, 

phosphorylation of HuR within its RNA-recognition domains leads to reduced RNA affinity, while 

phosphorylation within a hinge region between the different domains alters its nuclear transport 23-25. HuR 

is also methylated on arginines located in the hinge region, a modification that occurs in macrophages 

following LPS stimulation, and that may contribute to stabilization of mRNA transcripts mediated by 

HuR 26. Another prominent example of regulation of RBP activity by phosphorylation is provided by 

TTP, which becomes phosphorylated in macrophages upon LPS stimulation, leading to TTP inactivation 

and to the stabilization of inflammatory transcripts. Accordingly, the mutation of these phosphorylation 

sites gave rise to a version of TTP with increased destabilizing capacity, leading to attenuated systemic 

responses to LPS in mice 27. Finally, upon activation of macrophages with LPS, Regnase-1 is rapidly 

phosphorylated by the IKK complex, followed by proteasomal degradation. Degradation of the Regnase-1 

protein likely contributes to releasing a ‘brake’ on the expression of IL-6 and other inflammatory 
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mediators 17. Proteasomal degradation of Regnase-1 in macrophages has also been shown to be in part 

initiated by the paracaspase MALT1 28. In fact, MALT1-mediated proteolytic cleavage of Regnase-1 has 

been extensively described in stimulated T lymphocytes 13. Because the activity of RBPs can be 

modulated by post-translational modifications that may be difficult to recapitulate in an experimental 

setting, it is possible that the effect of a given RBP in vivo may differ from its overall targeting 

capabilities observed in vitro. For instance, Regnase-3 was shown to be able to bind mRNA targets in 

vitro, but to be unable to modulate them in vivo, most likely because of the requirement for specific post-

translational modifications or protein partners that are still to be uncovered 14. The existence of multiple 

post-translational mechanisms, which may also be cell type- and stimulus-dependent, ensures tight control 

of RBP expression and function. 

 

RNA methylation 

Post-transcriptional modifications regulate the fate of RNA molecules by modulating the binding of 

dedicated RBPs. This can occur either directly, for instance through RBPs that recognize specifically the 

RNA modification, or indirectly, since RNA modifications can affect RNA secondary structures and 

consequently the binding of proteins recognizing such structures 29. The N6-methylation of adenosines is 

one of the most abundant modifications identified in mRNAs and is mainly located near stop codons and 

within the 3’UTRs.  

The methyl group of m6A is specifically recognized by a specialized YTH protein domain, conserved 

from yeast to human, and such interaction influences many aspects of the mRNA life cycle, including 

splicing, RNA degradation and translation 30. Among the described YTH-containing proteins, YTHDF1, 

YTHDF2 and YTHDF3 are paralogues, and they probably possess fully redundant functions, although 

their impact on specific mRNA targets may also depend on their relative level of expression in different 

cells and tissues 31,32. Differently from the YTHDF proteins, YTHDC1 is nuclear and is involved in the 
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silencing of retrotransposons 33,34, while YTHDC2 (which despite the name is not a paralogue of 

YTHDC1) has primarily germ cell-associated functions 35,36. 

At least when considering cytoplasmic mRNA, the most common and established outcome of m6A 

methylation is the destabilization of the targeted transcript, although other effects, for instance on mRNA 

translation rates, have been observed (reviewed in 37). The m6A modification is deposited on nascent 

mRNAs in the nucleus in a process that appears to be associated with the rate of transcription, thereby 

coupling transcription regulation to mRNA stability. Indeed, ‘slow’ gene-specific transcription results in 

increased m6A deposition, leading to shortening of the poly-A tail and enhanced mRNA decay mediated 

by the recruitment of the CCR4-NOT complex 38, suggesting a central role for m6A methylation in the 

crosstalk between transcription and translation. 

The methyltransferase complex that deposits m6A on mRNA molecules contains the catalytic subunit 

METTL3 and several additional components, most notably METTL14 and WTAP 37. The methyl group 

can also be “erased” from mRNA molecules through either direct removal or iterative oxidation mediated 

by ALKBH5 and FTO 39, respectively, although the general physiological relevance of such process 

remains to be fully understood. A recent CRISPR-Cas9 screen focused specifically on RBPs identified 

Mettl3 as a prominent player in the regulation of macrophage activation in response to LPS. Indeed, mice 

lacking Mettl3 specifically in macrophages had increased susceptibility to sepsis and reduced ability to 

control tumor growth 40. Interestingly, although dysregulated in macrophages lacking Mettl3, the 

transcripts encoding for cytokines like Tnf and Il6 contained no detectable m6A peaks, suggesting that 

they were affected indirectly by the absence of Mettl3. Mechanistically, increased LPS responses in 

Mettl3-/- cells were linked to the increased stability of transcripts encoding for negative regulators of 

TLR4-signaling such as IRAKM, which are normally heavily m6A-modified, confirming a prominent role 

for m6A in regulating the stability of mature mRNAs in the cytoplasm.  

As highlighted in the example above, one of the key questions when studying mRNA methylation is to 

understand if a particular mRNA is indeed methylated and where. Moreover, whether the same transcripts 
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are similarly modified (and thereby similarly regulated) across multiple cell types remains to be 

established. While the experimental analysis of m6A in the system under investigation remains crucial, 

databases and m6A target prediction tools are now becoming more common and accessible and are briefly 

summarized in Box 1.  

 

Box 1. m6A RNA-methylation: databases and online tools  

In the past few years, the ability to map RNA modifications transcriptome-wide through next-generation 

sequencing technologies revolutionized our understanding of the biology and function of m6A. Adenosine 

methylation occurs in the context of a rather common and promiscuous consensus sequence, although the 

proportion of sites that are actually methylated represents only a fraction of the overall number of 

consensus sequences available. Furthermore, these sites may be methylated with variable frequency, 

indicating the some aspects of the regulatory logic underlying m6A deposition remain poorly understood 

37. To date, several high-throughput sequencing methods have been developed to detect m6A across the 

entire transcriptome. Consequently, a large amount of datasets profiling m6A and other RNA 

modifications in different system and organisms has been generated. This increased production of data led 

to the development of databases and bioinformatics interfaces that aim at collecting, organizing and 

sharing RNA-modification data within the scientific community. Methylated RNA immunoprecipitation 

and sequencing (MeRIP-seq) 41,42 was the first method developed to profile m6A across the transcriptome. 

Despite being less accurate compared to more recent protocols that achieved single nucleotide resolution 

43-45, it requires less starting material and produces higher coverage 46. Therefore, it is not surprising that 

the vast majority of the m6A-related databases available online comprises transcriptome-wide m6A peaks 

obtained from published MeRIP-seq data. Among these, MethylTranscriptome DataBase (MeT-DB) is a 

comprehensive database designed for m6A in mammalian cells. This database collects m6A peaks 

identified by MeRIP-seq performed in samples from 7 species (including human and mouse) and includes 

m6A sites detected also in non-coding RNAs such as lncRNAs and miRNA 47. All this information can be 
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easily navigated through a genome browser platform. The RNA modification Base (RMBase) database is 

another interesting tool that, on top of collecting MeRIP-seq data about m6A, integrates  sequencing data 

for other different mRNA modifications (m6A, m1A, m5C, Ψ, 2’O-Me and others) 48. Compared to MeT-

DB this database provides a more comprehensive overview of the epitranscriptomic landscape and allows 

the user the possibility to display and download modified sites identified in experimentally validated 

datasets. Moreover, it also grants the possibility to display cell-specific position weight matrices (PWMs) 

which were de novo identified by re-analyzing public dataset. Finally, the RNA EPItranscriptome 

Collection (REPIC) database 49 integrates m6A data with public data from Gene Expression Omnibus 

(GEO) and ENCODE, allowing the navigation of potential interactions between m6A modification and 

histone marks or chromatin accessibility. All these databases provide user-friendly platforms to explore 

m6A data in experimentally validated datasets. However, despite providing valuable information about a 

given site being potentially methylated, Met-DB, RMBase and REPIC do not consider tissue or cell 

specificity. Towards this goal, the CVm6A database provides a cell line-dependent collection of m6A 

patterns, including information relative to the abundance of the m6A modification and to the subcellular 

localization of transcripts 50. At least for the time being, CVm6A displays only data relative to specific 

cell lines, which can be sometimes difficult to translate to primary cells or tissues given the context-

specific nature of RNA modifications. To date, the only database providing quantitative, condition-

specific information of RNA modified site in tissues, cells and cell lines is m6A-Atlas 51. This database 

collects the profiling datasets for m6A deriving only from single base-resolution technologies, therefore 

increasing the accuracy of the annotated sites. Of note, m6A-Atlas also provides data about conservation 

of m6A sites across several species and the annotation of several modifications in 10 viral strains, 

although the lack of a light genome browser makes this very promising database at times difficult to 

navigate. Moreover, probably because RNA modification profiling methods at single base resolution are 

still less used compared to non-base-resolution techniques, the majority of the data on this platform are 

related to human samples.  
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Beside databases for m6A visualization, several bioinformatics tools based on machine learning have been 

developed to predict m6A sites in specific query sequences. M6APred-EL and sequence-

based RNA adenosine methylation site predictor (SRAMP) are two simple online platforms that allow the 

prediction of m6A site in input RNA or cDNA sequences, something that can be very useful to identify 

putative m6A sites on specific RNAs of interest 52,53. However, these platforms do not allow a list of 

RNAs as input, making them suitable primarily for investigating a few transcripts at a time. Finally, it is 

worth mentioning the existence of the RNAmod web-based platform 54, which allows the analysis and 

functional annotation of several mRNA modifications. This web tool uses BED input files containing 

chromosomal locations of RNA modifications obtained from sequencing data and allows even the users 

that are less familiar with coding language to perform a comprehensive annotation and visualization of 

the distribution of specific mRNA modifications in sequenced samples of interest.  

 

RNA-binding proteins and RNA modifications as roadblocks against parasitic 

nucleic acids 

Since the half-life of an mRNA molecule is usually in the range of minutes to hours, it would seem more 

efficient to primarily regulate gene expression at the level of transcription, and to translate the mature 

mRNA for the duration of its relatively short life, followed by degradation 55. Why then so many post-

transcriptional “roadblocks” to protein synthesis? There are several possible answers that we can 

envision. First, like the complexity that is observed in the regulation of transcription, the regulation of 

mRNA translation contributes to the spatial and temporal regulation of gene expression that is required 

during the development and evolution of complex multicellular organisms, as seen in the case of the fish 

embryos mentioned above 3. Second, post-transcriptional regulation fine-tunes responses to 

environmental signals. For example, regulation of the stability and translation of pre-formed mRNAs is 

especially important in the context of the immune system, ensuring fast responses to an invading 

pathogen 56. Finally, such complexity in the mechanism of mRNA regulation creates an additional 
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opportunity to discriminate cellular, ‘self’ nucleic acids while at the same time fending off the invasion of 

parasitic nucleic acids, like in the case of viral infections 55. Indeed, several RBPs, located both in the 

cytosol and in endosomes, act as cellular sensors against viral infections, and their engagement leads to 

the initiation of anti-viral responses including RNA degradation, production of type I IFNs and inhibition 

of protein synthesis. These include Toll-like receptors (TLRs) 3, 7 and 8, the serine/threonine kinase PKR 

and the RIG-I-like receptors RIG-I and MDA5. These RNA sensors are activated by unusual RNA 

products derived from viral replication, such as long double-stranded (ds) RNA or triphosphate 5’ ends, 

allowing the discrimination of host and viral RNAs 55,57. For instance, recognition of long dsRNAs 

activates PKR to phosphorylate the translation initiation factor elF2a, leading to the direct inhibition of 

mRNA translation. Both TLR3 and TLR7 are primarily localized in endosomes, and while TLR3 detects 

long dsRNA, TLR7 is preferentially activated by G and U rich sequences in single-stranded RNAs 58. 

Viral RNAs containing 5’-triphosphates instead of the 5’-cap, as well as dsRNAs are recognized in the 

cytoplasm by RIG-I, which in turn triggers the production of type I IFNs. MDA5 recognizes complex, 

structured RNAs, including dsRNAs and branched RNAs that are likely to be intermediates of viral 

replication 57. 

Importantly, incorporation of modified nucleosides into viral RNAs can negatively affect recognition by 

nucleic acid sensors, resulting in an ablated inflammatory response 59. For example, the m6A modification 

can act as a molecular marker contributing to the ability of the cells to discriminate self vs. non-self RNA, 

since non-methylated RNA can more easily be recognized by viral sensors. The fact that m6A deposition 

is crucially involved in modulating the recognition of self-nucleic acids was remarkably shown by the 

deletion of Mettl3 in the hematopoietic compartment. The overall outcome of such deletion was bone 

marrow failure and embryonic lethality. Mechanistically, loss of m6A resulted in the accumulation of 

aberrant endogenous dsRNAs, which in turn led to the unwarranted activation of an innate IFN response, 

contributing to the compromised hematopoietic output 60.  How the presence of m6A is normally able to 

suppress the formation of endogenous dsRNAs remains to be uncovered.  
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RNA methylation is also exploited by some RNA viruses, including SARS-CoV-2, to mimic cellular 

RNA and evade recognition by the cytoplasmic RNA sensor RIG-I 61-63 (Fig. 3). The m6A modification 

can also critically alter the outcome of infections by affecting not only viral, but also host mRNAs 

involved in antiviral responses. Indeed, the mRNA transcripts encoding for type I IFNs are m6A-

modified, and depletion of components of the m6A machinery increased the abundance of IFN-a/b, 

leading to reduced viral replication 64.  

 

Expression of RBPs in mast cells and other innate immune cells  

A comparative analysis of the expression of Regnase, TTP, HuR and m6A-related proteins across 

different innate immune cells based on RNA-sequencing data from the Immunological Genome Project 

(www.immgen.org) 65, revealed some level of both cell type and tissue specificity in the expression of 

several of these factors (Fig. 4). For example, among the different ZFP36 family members, Zfp36 and 

Zfp36l2 are expressed by most innate cells (including dendritic cells, macrophages, neutrophils, and mast 

cells), but Zfp36l2 is especially high in basophils and eosinophils, although the reason for this difference 

and to what extent the different Zfp36 family members have unique or overlapping functions remains to 

be fully understood.  On the other hand, the genes encoding the m6A readers Ythdf1, Ythdf2, and Ythdf3 

showed more similar and consistent expression across different cell types and conditions, except for 

generally lower expression of Ythdf1 compared to the other family members (Fig. 4). However, the 

different paralogues of the YTHDF family are likely to act in a fully redundant manner 31,32, so it remains 

unclear at this stage if differences in the expression of one family member may have a biologically 

relevant impact. 

More specifically about mast cells, these are innate immune cells with key effector functions in allergy 

and asthma. In response to a large variety of signals, these cells produce an array of mediators, including 

cytokines, chemokines and proteases that can influence the functionality of the surrounding tissues, the 
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recruitment and activation of other immune cell types, and the permeability of blood vessels 66. 

Importantly, mast cells are exclusively tissue-resident cells, and as such they are not easily accessible for 

experimental purposes, a limitation that in part explains the many open questions that still remain about 

their physiological functions and regulation. Recent efforts to study directly the transcriptome and 

proteome of tissue-resident mast cells in mouse and human revealed that these cells appear to be rather 

dissimilar from other immune cell types, and to be suited to interact with the tissue microenvironment 

through the expression of many receptors, including for example adhesion molecules (CD312, SIGLEC6 

and others) and molecules involved in the interaction with neurons, most notably MRGPRX2, which 

mediates mast cell degranulation in response to neuropeptides 67,68. At least when compared to immune 

cells circulating in the blood, mast cells represent a very distinct cell population, both at transcriptome 

and proteome levels 67,68, although to what extent mast cells acquire distinct phenotypes in response to the 

tissue microenvironment remains to be fully understood.  

As for the expression and function of RBPs in mast cells, browsing published transcriptome data revealed 

that resting, unstimulated murine mast cells derived from different tissues express high levels of all the 

Zfp36 family members (Fig. 5). Among the Regnase family members, Zc3h12a and Zc3h12c (Regnase-1 

and Regnase-3) are detectable at variable extent depending on the tissue, while expression of Zc3h12b 

and Zc3h12d (Regnase-2 and Regnase-4) is negligeable. Most of the genes involved in m6A metabolism 

and recognition are also well-expressed. Finally, apart from RIG-I (Ddx58), most RNA sensors had very 

low expression in mast cells 68, a finding mostly consistent with the proteome profiling of human mast 

cells from skin and fat, that could not identify expression of any RNA sensor except for RIG-I 67. No 

major difference in the expression of the RBPs indicated in Fig. 5 was observed when comparing 

inducible bone marrow–derived mucosal mast cells and constitutive, embryonic-derived connective tissue 

mast cells in the mouse, except for Zfp36 that appeared to be more highly expressed in the constitutive 

subpopulation of mast cells 69. While the pattern of expression of the abovementioned RBPs may provide 

some initial insights about their role in mast cells, their function remains for the most part unknown in 
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this specific cell type. At least some of the general mechanisms of regulation may probably be inferred 

from studies performed on other cell types. For instance, the paracaspase MALT1 was shown to 

inactivate Regnase-1 in T lymphocytes in response to TCR signaling 13. Since activation of mast cells 

through the high-affinity IgE receptor (FceRI) also requires MALT1 expression 70, it is probably not 

unreasonable to hypothesize that the MALT1-mediated inactivation of Regnase-1 might be important in 

mast cells to license full expression of inflammatory mediators upon IgE crosslinking. Another example 

is provided by TTP, whose expression was induced in mast cells by IL-4 signaling. This in turn limited 

TNF production in an ARE-dependent manner upon acute activation 71, suggesting that TTP may exert its 

negative regulatory effects on TNF in all cells in which both of these factors are expressed. However, the 

impact of TTP on mRNA expression was also shown to be at least in part dependent on the cell type, as 

revealed by the direct comparison of differential gene expression in macrophages and neutrophils lacking 

TTP 6, suggesting that the fine regulation of the different RBPs and their impact on myeloid cell functions 

requires further studies. 

 

Concluding remarks and outstanding questions  

Overall, extensive research in recent years has uncovered crucial roles of RNA methylation and RBPs in 

mast cells, macrophages and other myeloid cells and in the regulation of the immune system as a whole. 

However, the emerging complexity in the post-transcriptional regulation of gene expression also 

highlights the limitations in our ability to distinguish and dissect causes from consequences when it 

comes to mechanistic, molecular analyses. As exemplified by the instances in which different RBPs (and 

miRNAs) cross-regulate each other’s expression, perturbation in the expression of one single factor may 

determine an abundance of both direct and indirect effects that may be very difficult to untangle. 

One key question that remains to be understood for many RBPs belonging to the same family is the issue 

of how unique or redundant the functions of the different family members might be. For instance, while 
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proteins belonging to the YTHDF family were shown to act in a redundant, compensatory manner 31,32, 

the different mechanisms of transcriptional, post-transcriptional and post-translational regulation of 

proteins of the Regnase family suggest that the different family members may have at least some unique 

functions. For example, Regnase-1 and Regnase-3 were shown to localize in different subcellular 

compartment in macrophages, with Regnase-1 being predominantly associated with P bodies and the 

endoplasmic reticulum, while Regnase-3 was predominantly associated with endosomes 14. The 

mechanism leading to such different localization and the functional outcome of such compartmentalized 

expression are not known, although one possibility that was put forward is that Regnase-3 may be 

involved in the degradation of foreign nucleic acids 14. Another outstanding question regarding Regnase 

proteins is the issue of binding vs. activity on particular transcripts. For instance, Regnase-3 was shown to 

bind the 3’UTR of the Ifng mRNA, despite being unable of regulating its expression 14. Such discrepancy 

between binding and activity was observed only for some targets, and how widespread this effect is 

remains to be investigated. Nevertheless, these results suggest that Regnase-3 may require additional 

signals to activate its enzymatic functions or that alternatively, it requires interactions with specific co-

regulators that still require identification. 

An additional complication is provided by the fact that recent large RNA-protein interaction studies have 

uncovered hundreds of additional RBPs with unknown functions and mechanism of action. Many of these 

proteins also lack conventional RNA-binding domains, indicating that the logic behind probably the 

majority of RNA-protein interactions in the immune system still remains to be unraveled. Many of these 

RBPs bind RNA through intrinsically disordered protein regions, characterized by low sequence 

complexity, a low proportion of bulky hydrophobic amino acids and a high proportion of polar and 

charged amino acids 72. Interestingly, due to their physical properties, intrinsically disordered proteins 

frequently interact with many other partners and may represent “hubs” of promiscuous protein-protein 

and protein-nucleic acid interaction networks that makes studying their functions particularly challenging 

73. In the future, the study of these proteins in the context of immune responses will undoubtedly provide 
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a better understanding of the mechanisms underlying the regulation of immune responses, potentially 

opening new possibilities of immune-modulation in disease.  
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Figure Legends 

Figure 1. Role selected RBPs in macrophages. Summary of the phenotype resulting from deleting the 

indicated RBPs either globally in all mouse tissues or selectively in myeloid cells using the indicated Cre 

transgenes. The mechanism of action on selected mRNA targets is also summarized. 

 

Figure 2. Post-translation regulation of selected RBPs. Example of mechanisms that contribute to 

modulate RBP activity at a post-translational level. Phosphorylation of TTP, Regnase-1 and HuR (top, 

clock-wise) was shown to impact protein activity, stability and subcellular localization. Methylation of 

HuR may be linked to increased stability of the HuR-bound mRNAs, although this remains to be formally 

demonstrated (hence the question mark), while Regnase-1 undergoes proteolytic cleavage mediated by 

the paracaspase MALT1. 

 

Figure 3. m6A modification and RNA sensing. A methyltransferase complex minimally composed of 

METTL3 and METTL14 leads to adenosine methylation in mRNAs, while enzymes such as FTO and 

ALKBH5 can function as m6A demethylases. Although not depicted, the deposition of m6A occurs 

primarily in the cell nucleus. The presence of m6A in viral RNAs can impede recognition by the RNA 

sensor RIG-I, thereby allowing viral escape from an innate immune response. 

 

Figure 4. Expression of mRNAs encoding selected RBPs across the myeloid compartment. The 

heatmap shows the relative expression of selected RBPs across myeloid cell types obtained from different 

tissues as indicated. Expression data were obtained from the Immunological Genome Project. 
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Figure 5. Expression of mRNAs encoding selected RBPs in mast cells. Expression data are from Ref. 

68, and only skin mast cells are shown. Eif2ak2 encodes for PKR and Ifih1 for MDA5. Other genes are 

defined in the text.  
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